CMEM2001: Proceedings of the 10th International Conference on Com-
putational Methods and Experimental Measurements, Y.V. Esteve, G.M.
Carlomagno, and C.A. Brebbia, eds., June 2001. WIT Press, Ashurst,
Southampton, UK, pp. 967-976.

Preliminary Study of Web
Scouts/Foragers for a Bioinformatic
Application: A Parallel Approach

R.L. Walker

Computer Science Department, University of California
at Los Angeles, Los Angeles, California 90095-1596
USA

EMail: rwalker@cs.ucla.edu

Abstract

Adaptive Web scout/forager prototypes for an experimental Search Engine,
Tocorime Apicu, based on a biological model and the movement of the
sun are being developed using the methodologies of active networks, evo-
lutionary computations, and scientific computing. This model has built-in
mechanisms which allow it to adapt to an ever changing surrounding envi-
ronment. This ever changing environment is similar to snapshots of Internet
traffic which vary considerably based on 1) the time of day, 2) time zones, 3)
various holiday and/or vacation patterns that exists throughout the world,
and 4) ever occurring natural disasters. The sun can be viewed as a mech-
anism that provides order to what would appear as a very chaotic set of
unrelated events over a period of time. The Internet prototypes emulate
this biological model by incorporating their ability to detect and avoid net-
work congestion. Network probes were deployed throughout the Internet
in search of Internet Service Providers (ISPs) hosting HyperText Markup
Language (HTML) services in order to initiate the process of developing
customized routes for the retrieval of Web pages by Web scouts/foragers.
Web scouts used the information obtained by the Web scout probes to de-
tect network congestion. If network congestion is not detected in a given
part of the world by a Web scout, additional Web scouts will be sent to
other web site in the immediate area with the possibility of deploying for-
agers based on the abundance of information. This paper focuses on the
development and implementation of the Web scout probes.

1 Introduction

Network probing software was developed to emulate the initial foraging
and scouting behavior [7],[12],[4],[16][19] of the chosen biological system
utilizing the methodologies of active networks and evolutionary computa-
tions. The social structure of this biological system contains communicat-
ing agents which possess built-in mechanisms for the survival of existing
colonies. These survival techniques are used to 1) search for food, 2) mark
territory, and 3) protect the individuals within the colony. Various tech-
niques are employed to continuously disperse agents within the biological
system so as to serve the needs of an existing colony in their location of ever
changing food sources which are prone to change drastically over a relatively
short period of time. This aspect of the biological model is being emulated
to facilitate customized routing.

2 Related Work

The methodology of active networks (ANs) [22],[17],[6],[21] has been used
for building and dynamically deploying network protocols. This approach
was developed to support novel network services such as routing, caching,
transcoding, combining, filtering, regulating, and processing transmitted
packets. Applications associated with this methodology are 1) firewalls,
2) Web proxies, 3) nomadic computing, 4) routers, 5) transport gateways,
6) application services supporting video conference users, and voice and
handwriting recognition, and 7) signaling facilities. Signaling facilities can
be used as a network probe facility in which the user queries the status of
networks for useful resource discovery, diagnostics, network monitoring, etc.

Various schemes for implementing communicating agent which can in-
corporate the methodologies associated with ANs have been developed using
evolutionary computation methodologies [20], genetic algorithms (GA) and
genetic programming (GP), which are needed to promote an efficient evo-
lution of software agents which in turn can be used to locate HyperText
Markup Language (HTML) hosts. Software agents [13] were developed for
distributed network routing and restoration in which the agents were pro-
vided with the capabilities of 1) acting on their own, and 2) communicating
with other agents. This scheme used genetically programmed agents to de-
centralize the control of network management by achieving partial control
as opposed to complete control. Partial control redistributes responsibility
away from the centralized controller to a host of partial controllers.

Navigation algorithms [10] utilizing/relying on the evolutionary pro-
cess of GP were employed to construct broadcasting algorithms needed in
the scheduling of agent actions resulting in the creation of a communication
graph. The resulting graph reflected the need to schedule agent actions
which lead to a system of paths which would in turn provide the minimum

broadcast time. The system of paths was created during runtime without
thorough knowledge of the communication topology.

A search-for-service methodology [8] built on a load distribution system
was used to retrieve complete information on the availability of resources
within a local area network (LAN) as well as wide area networks (WANs).
These mechanisms incorporate the ability to delegate jobs to random net-
work host which in turn create network profiles within a LAN based on
the rejection rate and chaotic traffic across the network. This approach
builds non-deterministic WAN search mechanisms on the deterministic LAN
search mechanisms. A search engine framework called NetMiner [3] studied
the usage of data mining and information retrieval (IR) on the Internet for
all types of multimedia files. This framework used the Internet directories
supplied by the Internet Service Providers (ISPs) such as Yahoo, Excite
NetDirectory, World Wide Yellow pages, and The Whole Internet Catalog
as the starting point for information retrieval. Page-to-page drilling was
used to follow each anchor (link) in a Web document until there were no
new pages to retrieve — a process which may take a month or more because
of the time required to build its corresponding data warehouse.

3 Development of the Web Probe Dispatchers

The efficiency of Internet applications is being tested by adding new ap-
plications which compete for the same network resources. The need for
adaptive congestion control and avoidance at the application level is re-
flected in the side-effects of the current non-adaptive application mecha-
nisms which reveal self-similarity among network transmissions. The expo-
nential growth of Web documents, the incorporation of multimedia appli-
cations with real-time demands, and a steady increase in World Wide Web
(WWW) users will lead to refinements in efficient design and implemen-
tation of probe/scout/foraging mechanisms needed by the information re-
trieval system associated with this project. The competition for bandwidth
will reward the adaptive and efficient applications. The incorporation of AN
methodologies enhances the development and incorporation of an adaptive
biological model associated with this experimental Search Engine.

3.1 Rationale

The approach taken by Yahoo has some merit which is not apparent when
viewing their strategy for Web page inclusion. Yahoo allows the user to
provide suggested categories for newly submitted Web pages. A human
editor eventually reviews the submittal form for Web page category place-
ments, and Web crawlers are then released to traverse the hypertext links
found within the submitted pages. Some advantages of this approach are:
1) links within the submitted page are accessible at the time of submittal,
and 2) the overhead associated with locating this page as well as the other
pages that are referenced within the submitted page is greatly reduced via

Table 1: IP addresses.

| Class || IP address range | Number of possible host]

A 0.x.x.x to 127.x.x.x 27 networks but each can
support up to 224 hosts
(approximately 16 million)
B 128.0.x.x to 191.255.x.x | 2'* networks but each can
support up to 2'6 hosts
(approximately 65535)
C 192.0.1.x to 223.255.255.x | 22! networks but each can
support up to 256 hosts

page-to-page drilling techniques. Some disadvantages of this approach are:
1) the scope of Yahoo’s page retrieval scheme is limited by page designers
who view Yahoo as a provider of adequate Web hosting facilities, 2) links
within the submitted page may eventually expire or be relocated /rehosted
with the same or different ISP provider, and 3) page-to-page drilling which
may take months.

The initial step in this methodology evolves from the transmittance
of Web scout probes to all ISPs in a manner similar to reliable flood-
ing [2],[9],[15]. The probes provide the Web scouts with their results which
reflect their maiden voyage to the various ISPs. Table 1 presents the possi-
ble number of Internet Protocol (IP) addresses supporting WWW services
which is based on the class structures associated with the IPv4 and even-
tually, the IPv6 protocols. The current class structures reflect the three
distinct network classes which have resulted in limitations on the dissemi-
nation of IP addresses. Class A can support up to 27 (approximately 128)
networks, class B can support up to 2'¢ (approximately 16384) networks,
and class C can support up to 22! (approximately 2 million) networks. There
are 232 possible IP addresses since they are represented by a 32 bit number.

3.2 Role of the Web Probe Dispatchers

The characteristics of the dispatcher encompasses the essential features
needed to release and coordinate the scout probes (network agents). Each
dispatcher has a finite scope area which allows it to only see ISPs within
a circle whose radius is given by a value V (its visibility) and whose cen-
ter is the dispatcher. This approach provides a basis for a co-evolutionary
methodology which is required to calculate a continuous assessments of the
impact of GP robustness (brittleness) associated with the cooperative be-
havior and its effectiveness among communicating agents. The robustness
of a GP program is defined as the ability of agents to cope with noisy or
unknown situations (unknown test data) within a GP application when com-

munication among multiple agents is due to effective job separation. New
and potentially improved behavior patterns are found to evolve through the
use of a fitness measure associated with co-evolutionary strategies.

3.3 Limitations of the Web Dispatcher

The rapid release of a series of scout probes can have an adverse effect on the
receiving host (ISP server) as well as on the sending host (dispatcher). The
scout probes are created as child processes which can overtake the resources
provided within the dispatcher’s environment. The most efficient use of
probes is related to the process of reliable flooding where monitors are used
so to adequately control and coordinate valuable information returned by
each probe. The ISP server may interpret the probes as a form of flooding
which results in request being queued at the router level and/or server level.
The worst case scenario results in extending the life of a probe beyond the
amount of time allocated to it as a means of locating the ISP and retrieving
valuable information. The dispatcher’s resources become overloaded when
too many probes have been allocated — thus preventing new processes from
being stored in the process table until some of the outstanding ones have
completed their probe of a selected ISP. The characteristics of the probes
are

e built-in autonomy - it can work unaided;

e reactive - it keeps interacting with the environment within appropriate
time limits;

e pro-active - capable of acting on their own;

e social - communicates with it’s dispatcher which sends the information
to Web scout /forager dispatcher(s);

e robust - ability to cope with the ever-changing network environment.

4 Testing the Web Probe Mechanisms
4.1 Releasing the Web Probes

The maiden voyage of Web probes to locate ISP hosting WWW services
starts with the dispatcher generating approximately 2048 child processes
on a continuous basis. This continuous set of processes are dispatched to
randomly chosen IP addresses. A 2048 buffer is used to store the PID as-
sociated with each child process which in turn is used to track the life span
of each probe allocated in accordance with a dynamic time-to-live (TTL)
being based on the dispatcher’s workload. The sleep() system call was used
in this initial implementation to provide breaks in the dispatching of new
scout probes so to emulate reliable flooding.

Table 2: Summary of Access Log for Web Scout Probe Dispatchers.

Web Probes
Item Version A
Access Log Duration 7 Days
Access Log Start Date 25 Jan 2001
Access Log Stop Date 01 Feb 2001
Total Requests 3213939.0
Avg Requests/ Day 459134.1
Number of Simultaneous 1,2,4,0r8
Probes
Number of HTML Servers 21609
Located

The purpose of randomly choosing ISPs — as opposed to performing
sequential searches — is due to an attempt to avoid flooding an ISP which
may support multiple Internet services via one host. The limitations of a
fixed buffer size of 2048 will become more apparent when the Web scout
probe/scout /forager dispatchers continuously transmits 1) probe scouts, 2)
Web scouts, and 3) Web foragers. When testing only the dispatching of
probes, the speed of the dispatcher’s CPU does not play a factor in size of
the buffer.

The integrated test of this approach reflects the dispatching process
of the three previously mentioned components needed in this project as a
means of adequately retrieving Web pages. The use of randomly chosen
ISPs should provide the Web page indexers with a diverse set of Web pages
reflecting the random selection of ISPs. A limitation of using randomly
chosen Web hosting ISPs is revealed in the location of an ISP which hosts
non-English Web pages. Filters will be needed during the developmental
stages of this aspect of the experimental search engine in order to perform
real time discovery/retrieval of Web pages, assess the demands placed on
the ISP hosting this experimental search engine, and as certain the resource
requirements of the LAN associated with the nodes in this distributed im-
plementation. These filters play a vital role in reducing the impact of foreign
languages on the fitness calculations used by the indexer when building the
corresponding IR system.

The Web probes emulate a search-for-service strategy when locating
existing as well as new ISPs hosting Web services. Finding these hosts,
eliminates one problem, but other problems may occur when one of the
following sources are found:

1. ISP responds as a Web server but unable to translate the IP address

2. An ISP access error

HTTP/1.0 403 Forbidden
Content-Type: text/html

<HEAD><TITLE>Error< /title>< /head><body><h1>Error 403
< /h1>Forbidden by proxy ACL check.</body>

3. Another ISP access error

HTTP/1.1 403 ERROR

Content-Type: text/html
Content-Length: 154

<h1>Error - 403</h1><HR><PRE>
<p>Failed to connect to server:</p>
<p>162.89.0.100 (80)

4. An ISP provider may be offline for upgrades, servicing such backups,
natural disasters, blackouts, etc.

4.2 Computational Measures

A feasibility study was conducted to determine a transmission rate for the
release of the scout probes using 4 parallel dispatchers. The different dis-
patchers in this study, labeled Version A, released either 1, 2, 4, or 8 simulta-
neous probes. Each dispatcher was restricted to one of the previous numbers
throughout the study. This study was also used to reveal any shortcomings
associated with each dispatcher (node) maintaining full transmission buffers
of 2048 probes. All of the probes targeted the same set of IP addresses, but
due to the number of simultaneously released probes, the same ISP was
not probed by all of dispatchers simultaneously. Table 3 present the results
associated with this feasibility test.

The goal of this test was to probe 222 IP addresses (approximately
4 million) in a 7-day period. This period of time was chosen since most
search engines update their respected IR system every 7 to 10 days. A total
of 21609 IP addresses were located that host some form of HTML service.
The bests results — as reflected by the fitness measures — were obtained
when 8 simultaneous probes were released. A projected usage is also shown
which reflected the update of Version A resulting in Version B. This new
version will require that each dispatcher patrol a distinct area of the Inter-
net in which each transmits 8 simultaneous probes.

The fitness measure [10],[18] associated with developing Web scout
probe/dispatcher algorithms was evaluated using

number of visited I P addresses

(1)

time(seconds) * number of simultaneous probes’

Table 3: Version A: Web probe results for a 7-day period.

Number of Number Number Number of
Simultaneously of of IP Cumulative | Individuals
Transmitted Probes Addresses Probability, Needed,
Probes Released | Located Fitness P(M,i) I(M,i,z)
1 598738 4138 0.989977
2 680697 4632 0.562746
4 959220 6392 0.396503
8 975284 6447 0.201572
Totals 3213939 21609 0.354270 0.0005 1830629
Projected
Probe Usage 3901136 25788 0.201572 0.0006 1533971
(Version B)

By incorporating several different computational measures, the performance
of the Web scout probe/dispatcher algorithms for this experimental search
engine can be measured. The components of these measures include 1) the
cumulative probability of success by generation i, P(M,), 2) the population
size, M, and 3) a target probability, z. Each 7-day period is being treated
as a generation. The cumulative probability is computed via the following
equation:

>-; HT ML servers located

P(M,i) = .
(M) total number of possible IP addresses

2)

The number of individuals needed to produce a solution by generation i
with probability greater than z ~ 99% is

3)

I(M,i,z):(i—i—l)x[log(1 — 2) w

log(1 — P(M,1))

6 Conclusion

Future studies will provide a methodology for the development and imple-
mentation of adaptive Web agents (Web scout and crawler mechanisms)
based on the methodologies of active networks, evolutionary computations,
and the biological model for the experimental search engine. The statis-
tical tools and methods for analyzing time series datasets from previous
studies of Internet traffic will be used to organize data captured (provided
by the Web scouts) at the packet level for network traffic between individ-
ual source/destination pairs. The proposed Web scouts/foragers will use
the scout probe results combined with congestion control and avoidance to
avoid areas of self-similarity within the Internet in their acquisition of Web
documents.

7 Acknowledgements

The author wishes to thank Walter Karplus and Zhen-Su She for their direc-
tion and suggestions. This work was supported by the Raytheon Fellowship
Program, Honeybee Technologies, and Tapicu, Inc.

References

[1]

[9]

[10]

[11]

Arlitt, M.F. & Williamson, C.L. Internet Web Server: Workload Char-
acterization And Performance Implications. IEEE/ACM Transac-
tions on Networking, pp- 631-645, 1997.

Bach, M.J. The Design of the UNIX Operating System Prentice Hall,
Inc.: Englewood Cliffs, NJ, 1990.

Cai, F.F. & Yu, Q. A Framework for Data Mining and Information
Retrieval on the Internet. Applications of High-Performance Com-
puters in Engineering VI, eds. M. Ingber, H. Power & C.A. Brebbia,
WIT Press: Ashurst, Southampton, UK, pp. 467-476, 2000.

Collett, T. Measuring Beelines to Food. Science, 287, pp. 817-818,
2000.

Diot, C., Huitema, C. & Turletti, T. Multimedia Applications should
be Adaptive. Technical Report, INRIA Sophia: Antipolis, France,
1995.

Hicks, M., Kakkar, P., Moore, J.T., Gunter, C.A. & Nettles, S. PLAN:
A Packet Language for Active Networks. Proc. of ICFP’98, ACM
Press: Baltimore, MD, pp. 86-93, 1998.

Lindauer, M. Communication Among Social Bees. Harvard University
Press: Cambridge, Massachusetts, 1961.

Michtchenko, A. Search-for-Service Strategy and Integration of LAN
into Web Operating System. Proc. of the High Performance Comput-
ing Symposium - HPC 2000, ed. A. Tentner, SCS Press: San Diego,
CA, pp. 231-235”, 2000.

Peterson, L.L. & Davie, B.S. Computer Networks: A Systems Ap-
proach, Morgan Kaufmann Publishers, Inc.: San Francisco, 1996.

Seredynski, F. Broadcasting and Spanning Trees in Interconnection
Networks: Genetic Programming Approach. Proc. of Parallel Com-
puting 95: State of the Art Perspectives, eds. E. D’Hollander, F.J.
Peters, G.R. Jouber & D. Trystram, Elsevier Science Ltd.: Amster-
dam, Netherlands, pp. 697-700, 1996.

Shenker, S. Fundamental Design Issues of the Future Internet. IEEE
J. of Selected Areas in Communication, pp. 1-24, 1995.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Luke, S. & Spector, L. Evolving Teamwork and Coordination with
Genetic Programming. Proc. of the 1996 Genetic Programming Conf.
eds. J.R. Koza, D.E. Goldberg, D.B. Fogel, & R.L. Riolo, MIT Press:
Cambridge, MA, pp. 150-156, 1996.

Sinclair, M.C. & Shami, S.H. Evolving Simple Software Agents: Com-
paring Genetic Algorithm and Genetic Programming Performance.
Proc. of the 2nd Int. Conf. on Genetic Algorithms in Engineering
Systems: Innovations and Applications, IEE: London, UK, pp. 421-
426, 1997.

Stein, L.D. Introduction to Human Genome Computing Via the World
Wide Web (Chapter 1). Guide to Human Genome Computing (2nd
edition), ed. M.J. Bishop, pp. 1-40, Academic Press: San Diego, CA,
1998.

Stevens, W.R. UNIX Network Programming, 2nd ed. Prentice Hall,
Inc.: Upper Saddle River, NJ, 1998.

Srinivasan, M.V., Zhang, S., Altwein, M. & Tautz, J. Honeybee Navi-
gation: Nature and Calibration of the “Odometer.” Science, pp. 851-
853, 287, 2000.

Tennenhouse, D.L. & Wetherall, D.J. Towards an Active Network
Architecture. ACM Computer Communications Review, 26(2), 1996.

Walker, R.L. Dynamic Load Balancing Model: Preliminary Assess-
ment of a Biological Model for a Pseudo-Search Engine. LNCS 1800,
eds. J. Rolim et al., Springer-Verlag: Berlin Heidelberg New York,
pp. 620-627, 2000.

Walker, R.L. Dynamic Load Balancing Model: Preliminary Results
for Parallel Pseudo-Search Engine Indexers/Crawler Mechanisms Us-
ing MPI and Genetic Programming. Proc. of VECPAR’2000. LNCS
Series, Springer-Verlag: Berlin Heidelberg New York, 2000. To ap-
pear.

Walker, R.L. Search Engine Case Study: Searching the Web Using Ge-
netic Programming and MPI. Parallel Computing, 27(1/2), pp. 71-
89, 2001.

Wetherall, D.J. Developing Network Protocols with the ANTS Toolkit.
Design Review, 1997.

Wetherall, D.J., Guttag, J.V. & Tennenhouse, D.L.. ANTS: A Toolkit
for Building and Dynamically Deploying Network Protocols. Proc. of
the IEEE OpenArch’98, IEEE Press: New York, 1998.

