Dynamic Load Balancing Model: Preliminary
Assessment of a Biological Model for a
Pseudo-Search Engine

Reginald L. Walker

Computer Science Department
University of California at Los Angeles
Los Angeles, California 90095-1596
rwalker@cs.ucla.edu

Abstract. Emulation of the current World Wide Web (WWW) search
engines using methodologies derived from Genetic Programming (GP)
and Knowledge Discovery in Databases (KDD) were used for the Pseudo-
Search Engine’s initial parallel implementation of an indexer simulator.
The indexer was implemented to follow some of the characteristics cur-
rently implemented by AltaVista and Inktomi search engines who index
each word in a Web document. This approach has provided very thor-
ough and comprehensive search engine results that have led to the devel-
opment of a Pseudo-Search Engine Indexer which has in turn provided
insight into the computational effort needed to develop and implement
an integrated search engine - information crucial to the adaptation of a
biological model. The initial implementation of the Pseudo-Search En-
gine Indexer simulator used the Message Passing Interface (MPI) on a
network of SUN workstations and an IBM SP2 computer system.

1 Introduction

Improvements to the fitness measure associated with Genetic Programming (GP)
applications have taken various approaches. The evolution of species within a

Fig. 1. Genetic programming operators a) crossover, b) reproduction, and ¢) mutation.



GP/Genetic Algorithms (GAs) search space results from an application of cluster
analysis techniques that utilize the evaluation of each individual’s (of a popula-
tion) fitness measure. The search space associated with GP/GAs applications is
obtained via a re-combination of partially-fit individuals who form potentially
fitter offsprings. Thus, the re-combination operators provides the algorithm with
a means to intelligently search [1] the entire search space with greater rewards.
The similarity measures [8] used to compare and/or cluster individuals within
the population are derived from the dimensionless ratio of the distance between
two individuals and their maximum possible distance which is the search space’s
boundaries.

The use of a single population leads to panmictic selection [5] in which the
individuals selected to participate in a genetic operation can be from anywhere in
the population. The use of subpopulations (evolution of species) is an additional
method used to avoid local optima [9]. Also, the GP operators adhere to the
closure property [1],[9] because the primary and secondary operators generate a
sets of functions and terminals that provide input to other applications of the
genetic operators.

2 Methodologies of Genetic Programming

2.1 Overview

Genetic Programming is an evolutionary methodology [2],[4],[14] that extends
and expands upon the techniques associated with Genetic Algorithms. The evo-
lutionary force of these methodologies reflects a population’s fitness. The foun-
dation for GAs is an artificial chromosome of a fixed length and size designed to
map the points in the problem search space. The artificial chromosome is derived
by assigning the variables of the problem to specific locations (genes/alleles). The
gene value denotes the value of a particular set of gene variables (memes) [1].
Such GAs provide an efficient mechanism for generating/displaying multidimen-
sional search spaces that are highly complex and/or nonlinear.

The hybrid chromosome structure associated with the Pseudo-Search En-
gine’s indexer [13] as shown in Figure 2, follows the methodologies of GP and
GAs. Here, a single structure was used to represent subsets (subpopulations) of
Web pages that reside at each node (Web site) and that will be eventually be ex-
panded to an allocation of two chromosomes per node. In the chromosome each
horizontal member structure represents a Web page that would translate into a
meme - genetic component that varies with each allele. The bracket to the left
of the Web pages refers to the pages having similar characteristics that comprise
a allele and its memes - which represents/corresponds to the most fundamental
features contained at each Web site. The addition of new Web pages at a given
Web site creates new allele which can in turn grow in size via the addition of
new memes (a process that does not alter the chromosome’s length). The ap-
plication of GP crossover operator - which transmits and contains the parents’
genetic makeup - results in two new chromosomes. The bracket mechanism here



e o 0 =
e 1 1
2 7 2 2 o
34 3 5= 3 5=
4a[: 4= 4=
s 1 s sH
6 |-E 6 6 -
TH | e
T wal {2 wal

Fig. 2. Distribution of Web Pages.

constitutes an organizational device that numerically orders the structure’s Web
pages - a phenomenon that facilitates the evolution of diverse nodes.

2.2 Application of the Genetic Operators

The improvement of the solutions generated in the GP applications [9] is due to
their evolution over a series of generations. Each successive generation is derived
from an application of some combination of the primary genetic operators: re-
production and crossover (see Figure 1). And while the application of the former
results in copying an individual into a new generation and/or subpopulation,
the utilization of the latter results in a random selection of distinct points from
two selected parents. Based on the values indicated by the fitness measure for
two offspring - two potential members of a new generation - certain individu-
als of the population are stochastically selected as parents. Thus, the resulting
children replace their parents in the existing population of solutions associated
with a specific GAs/GP application. The migration operator in GP purges an
existing sub-population of the least desirable members and in some cases the
best member. This process provides GP with another mechanism to avoid local
optimals.

Secondary operators, such operators are the mutation and editing opera-
tors, utilize a probability model that modifies individuals prior to their inclu-
sion/addition to the new generation. By randomly selecting an individual and
replacing a sub-tree with a new, randomly generated sub-tree the mutation op-
erator avoids local optima in the search space. The editing operator in turn,
chooses sets of individuals only when they are in possession of some specified
generational frequency. After the application of the editing operator, the identi-
ties of the individuals are modified with simpler statements



Table 1. Genetic Programming and its corresponding Evolutionary Operators.

cause Honeybee Colony Genetic Programming Operators
bees fly out migration/swarming migration

queen and drones mate reproduction crossover /reproduction

worker bee lays eggs mutation mutation/editing

3 Adapting the Biological Model

3.1 Overview of the Biological Model

The basic characteristics exhibited by the inhabitants of a honeybee colony [3][12]
are those that will be utilized to adequately search the Web for valuable infor-
mation. These basic characteristics will be translated so as to develop a model
of an integrated search engine using GP (see Table 1). The evolutionary pro-
cesses exhibited by the bee colony thus provide a biological model not only for
the storage, processing, and retrieval of valuable information but also for Web
crawlers, as well as for an advanced communication system.

The biological storage mechanism for Web documents will simulate the inte-
rior components of the honeycomb, while the crawler mechanisms will be simu-
lators that emulate the behavior of forager bees (communicating agents). Since
the queen is the centralized control and co-ordination mechanism in a bee colony,
queen simulators will be developed to control and coordinate all the process in-
teractions within the simulated hives (Web sites). For mating purposes drone
simulators will also be introduced in the model. Some of the functionality of
the worker bees are integrated as components of a traditional operating system.
Worker bees perform various tasks such as: 1) cell cleaning, 2) feeding larvae,
3) comb building, 4) nectar reception within the hive, 5) pollen packing, 6) re-
moving debris, and 7) guarding. Also, they perform routine inspections and give
extensive care to the bee larvae that range from one to thousands of visits. Cur-
rent operating systems (OS) mechansims perform such rudimentary worker bees
tasks as the allocation/deallocation of memory, garbage collection, and the basic
form of computer security for user data as well as the OS itself.

The characteristics provided by this model remove the implementation lim-
itations inherent in a methodology when developing a comprehensible model.
The worker bees’ conversion of pollen and nectar into honey will be simulated
so as to provide a model for the indexing mechanisms that are essential in the
organization of various sets of existing Web documents.

The current Pseudo-Search Engine Indexer, capable of organizing limited
subsets of Web documents, provides a foundation for the first bee hive simula-
tors. Adaptation of the honeybee model for the refinement of the Pseudo-Search
Engine establishes order in the inherent interactions between the indexer, crawler
and browser mechanisms by including the social (hierarchical) structure and
simulated behavior of this complex system [6]. The simulation of behavior will



engender mechanisms that are controlled and co-ordinated in their various levels
of complexity.

3.2 Description of the Computer Model

The components of the computer system for the Pseudo-Search Engine can be
compared to those of the honeybee colonies’ social organization. The model in
Table 2 shows the correlation between the honeycomb cells, queens, worker bees,
drones, forager bees, guard bees, and such components as propolis, water, pollen,
and nectar that are needed to sustain life in the colony. Here, the honeycomb
cells, used to store pollen, nectar, and honey as well as brood (eggs and larvae),
correspond to the memory cells in a computer. Each queen, responsible for con-
trolling and coordinating most of the activities within a bee colony by releasing
over 32 distinct pheromones, is here equivalent to a Web site (each indexer in-
corporates the functionality of the computer operating system) which manages
and coordinates all of the activities associated with the efficient operation of a
computer system. The implementation of drone Web sites will also be modeled
after that of queen Web sites. Since the forager bees while searching for propolis,
pollen, nectar, and sometimes water still serve the queen, the pheromones also
regulate the activities that occur around the bee colony.

Most processes associated with the computer model for the Pseudo-Search
Engine will have short life spans that are similar to those of the bee colony
members. When submitted via the browser interface, the validity of a users
requests will be determined by the guard bee emulators that inspect all the bees
entering the colony. The forager bees here represent the Web crawlers which will
retrieve Web pages from a diverse set of locations; and the diverse quantity of
pollen, nectar, honey, and possible water that resides in a bee colony will here
represent the diverse set of Web pages that comprised the WWW.

Table 2. Computer Model for the Evolutionary Pseudo-Search Engine.

Honeybee Colony Computer Model
queens and drones Web sites
propolis, pollen, nectar, Web pages
and sometimes water
honey useful/organized information resulting
from processed Web pages
honey comb cells memory locations
brood and worker bees processes
guard bees computer security system
possible intruder possible user
- checked by guard bees - restricted internal access

- restricted internal access




4 Computation Measures for the Pseudo-Search Engine

4.1 Overview

Computation measures [5] for GP applications were developed to measure the
extent of the difficulty associated with the size of the population. The effort
needed to apply genetic operators such as reproduction, crossover, and mutation
is minute when compared to the computational effort needed to evaluate the
fitness of each individual in a population. Also, as the population size increases,
memory constraints become the next factor that requires consideration.

The creation of subpopulations requires the computation of localized fitness
measures - a process that improves the overall performance to a degree that
makes it directly proportional to the number of nodes (Web sites). One side
effect of using GP and/or GAs-based approach is the disorderly sequence of con-
ditions and other operations associated with individuals in the population. The
model under development consists of a network of workstations and a network
of single-board computer (such as the IBM SP2). The limitations of such system
configurations include ongoing management and maintenance of the independent
processes on an unruly collection of machines. The configuration for this type of
environment consists of a host computer that acts as the file server, a Program
Manager, and the network of processing nodes (queens and drones).

4.2 Computational Measures

By incorporating several different computational measures [5] the performance
of the genetically enhanced Information Retrieval (IR) system for the Pseudo-
Search Engine Indexer (the simulator of the internals of the bee colony’s internal
mechanisms) can be measured. The components of these measure include 1) the
cumulative probability of success by generation i, P(M,i), 2) the population
size, M, and 3) a target probability, z.

The number of fitness evaluation for the sequential version with panmictic
selection is

x=M(@i+1), (1)

while the number of fitness evaluation for the parallel version is

v =3 Quli(d) +1). (2)

Here, i represents the generation number for the solution, d is the summation
index that runs over the n nodes, @4 is the subpopulation (deme) size, and i(d)
is the number of the last reporting generation from node d at the time when the
sequential version satisfied the success criterion. The cumulative probability is
computed via the following equation:

> ; successful runs

P(M,i) = .
(M) total number of runs

3)



The number of independent runs needed to achieve a required probability, z,
following x fitness evaluations is given by

o) = [t .

The problem size [7] can be computed by using the equation

(4)

k=pxgxe, (5)

where p is the population size, g is the number of generations, and e is the
number of fitness cases. The number of Web pages to be classified is represented
by the number of fitness cases for the Pseudo-Search Engine.

Additional fitness computations are associated with the maintenance of in-
dividuals of different species. The number of individuals [10] needed to produce
a solution by generation ¢ with probability greater than z ~ 99% is

log(l —z
I(M,i,z):xx(i%—l)x[m—‘. (6)
This computation also indicates the number of individuals needed for the par-
tial control mechanism [11] - a mechanism essential in the determination of the
number of required Web crawlers. Another computational measure [5] used to
determine the “computational effort” required in solving the given genetic pro-
gramming system is computed via the following equation:

computational ef fort = min(I(M,i,z)). (7)

5 Conclusion

In supplying its IR system current search engines incorporate some form of a
crawler mechanism for the retrieval of Web documents. The implementation is-
sues associated with the Pseudo-Search Engines’ indexer provide insight into the
caliber of adaptive crawler mechanisms essential in accurately parsing, indexing,
and retrieving Web documents. These insights gained from the initial implemen-
tation of this simulator have been utilized in the initial phase of the biological
model adaption. To facilitate communication among the diverse process mech-
anisms (the indexer(s), Web crawler(s), and the browser interface(s)), compo-
nents indispensable in the formation of a fully integrated Pseudo-Search Engine,
this biological model provides built-in mechanisms. In addition to representing
a benchmark in the determination of the implemented scheme’s efficiency, the
adopted model also serves as a foundation for future evolutionary expansions of
this search engine as World Wide Web documents continue to proliferate.

6 Acknowledgements

The author wishes to thank Walter Karplus and Zhen-Su She for their direction
and suggestions. Support for this work came from the Raytheon Fellowship Pro-
gram. Special thanks to Martha Lovette for her assistance with the figure in this

paper.



References

1.

10.

11.

12.

13.

14.

Abramson, M.Z., Hunter, L.: Classification using Cultural Co-evolution and Ge-
netic Programming. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.):
Proc. of the 1996 Genetic Programming Conf. MIT Press, Cambridge, MA (1996)
249-254

. Chapman, C.D., Jakiela, M.J.: Genetic Algorithm-Based Structural Topology De-

sign with Compliance and Topology Simplification Considerations. J. of Mech.
Design 118 (1996) 89-98

Free,J.B.: The Social Organization of Honeybees (Studies in Biology no. 81). The
Camelot Press Ltd, Southampton (1970)

Koza, J.R.: Survey of Genetic Algorithms and Genetic Programming. In: Proc. of
WESCON ¢95. IEEE Press, New York (1995) 589-594

Koza, J.R., Andre, D.: Parallel Genetic Programming on a Network of Transput-
ers. Technical Report STAN-CS-TR-95-1542. Stanford University, Department of
Computer Science, Palo Alto (1995)

Marenbach, P., Bettenhausen, K.D., Freyer, S., U., Rettenmaier, H.: Data-Driven
Structured Modeling of a Biotechnological Fed-Batch Fermentation by Means of
Genetic Programming. J. of Systems and Control Engineering 211 no. I5 (1997)
325-332

Oussaidéne, M., Chopard, B., Pictet O.V., Tomassini, M.: Parallel Genetic Pro-
gramming: An Application to Trading Models Evolution. In: Koza, J.R., Gold-
berg, D.E., Fogel, D.B., Riolo, R.L. (eds.): Proc. of the 1996 Genetic Programming
Conf. MIT Press, Cambridge, MA (1996) 357-362

Senin, N., Wallace, D.R., Borland, N.: Object-based Design Modeling and Opti-
mization with Genetic Algorithms. In: Banshaf, W., Daida, J., Eiben, A.E., Gar-
zon, M.H., Honavar, V., Jakiela, M., Smith,R.E. (eds.): GECCO-99: Proc. of the
Genetic and Evolutionary Computation Conf. Morgan Kaufman Publishers, Inc.,
San Francisco (1999) 1715-1721

Sherrah, J., Bogner, R.E., Bouzerdoum, B.: Automatic Selection of Features for
Classification using Genetic Programming. In:Narasimhan, V.L. Jain, L.C. (eds.):
Proc. of the 1996 Australian New Zealand Conf. on Intelligent Information Sys-
tems. IEEE Press, New York (1996) 284-287

Spector, L., Luke, S.: Cultural Transmission of Information in Genetic Program-
ming. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.): Proc. of the
1996 Genetic Programming Conf. MIT Press, Cambridge, MA (1996) 209-214
Sinclair,M.C. , Shami, S.H.: Evolving Simple Software Agents: Comparing Genetic
Algorithm and Genetic Programming Performance. In: Proc. of the 2nd Intl. Conf.
on Genetic Algorithms in Engineering Systems: Innovations and Applications. IEE
Press, London (1997) 421-426

von Frisch, K.: Bees: Their Vision, Chemical Senses, and Languages. Cornell Uni-
versity Press, Ithaca, New York (1964)

Walker, R.L.: Implementation Issues for a Parallel Pseudo-Search Engine Indexer
using MPI and Genetic Programming. In: Proc. of the Sixth International Conf. on
Applications of High-Performance Computers in Engineering. WIT Press, Ashurst,
Southampton, UK (January 2000). To appear

Willis, M.J., Hiden, H.G., Marenbach, P., McKay, B. Montague, G.A.: Genetic
Programming: An Introduction and Survey of Applications. In: Proc. of the 2nd
Int. Conf. on Genetic Algorithms in Engineering Systems: Innovations and Appli-
cations. IEE Press, London (1997) 314-319



